Concentration phenomena for solutions of superlinear elliptic problems
نویسندگان
چکیده
منابع مشابه
On Neumann “superlinear” elliptic problems
In this paper we are going to show the existence of a nontrivial solution to the following model problem,
متن کاملInfinitely Many Solutions of Superlinear Elliptic Equation
and Applied Analysis 3 Lemma 6 (see [17]). Assume that |Ω| < ∞, 1 ≤ p, r ≤ ∞, f ∈ C(Ω×R), and |f(x, u)| ≤ c(1+|u|). Then for every
متن کاملSuperlinear elliptic problems with sign changing coefficients
Via variational methods, we study multiplicity of solutions for the problem −∆u = λb(x)|u|q−2u + a u + g(x, u) in Ω , u = 0 on ∂Ω . where a simple example for g(x, u) is |u|p−2u; here a, λ are real parameters, 1 < q < 2 < p ≤ 2∗ and b(x) is a function in a suitable space L. We obtain a class of sign changing coefficients b(x) for which two non-negative solutions exist for any λ > 0, and a...
متن کاملSolutions of Superlinear at Zero Elliptic Equations via Morse Theory
(1) { −∆u = f(u) in Ω, u = 0 on ∂Ω, where Ω ⊂ R is an open bounded domain with smooth boundary. We assume that f ∈ C(R,R) satisfies f(0) = 0, so the constant function u ≡ 0 is a trivial solution of (1). We are interested in the existence of nontrivial solutions when f is superlinear at zero, that is near zero it looks like O(u|u|ν−2) for some ν ∈ (1, 2). More precisely, we assume that f and its...
متن کاملMultiplicity of Solutions to Fourth-order Superlinear Elliptic Problems under Navier Conditions
We establish the existence and multiplicity of solutions for a class of fourth-order superlinear elliptic problems under Navier conditions on the boundary. Here we do not use the Ambrosetti-Rabinowitz condition; instead we assume that the nonlinear term is a nonlinear function which is nonquadratic at infinity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2006
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2005.02.002